Moist convection scheme in Model E2
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This documentation describes the moist convection scheme implemented in the

NASA Goddard Institute for Space Studies General Circulation Model - Model E2.

1) Convective cloud model
The moist convection scheme in Model E2 uses the entraining-detraining plume
model for updrafts and downdrafts. For each updraft or downdraft plume, the

following equations are used to diagnose the properties of the plume.

Mass flux (M):

aMu,d _ ,d
T = (S — S)Mu , (1)

where superscripts u and d indicates the updraft and downdraft, respectively. Here, ¢

and J represent fractional entrainment and detrainment rate, respectively.



Potential temperature (), specific humidity (q), and horizontal momentum (u, v):
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where the overbar indicates a gridbox-mean quantity. The source/sink term S for each
variable @ is summarized in Table 1. When condensation occurs, the resulting
condensate is used in cumulus microphysics described in the next section.

Note that the grid-scale budget equation for any generic prognostic variable @ is

given by,
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For the updraft plume, the vertical velocity of the cloud parcel (w) is calculated

following Gregory (2001):
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wherea = 1/6,b = 2/3, g is gravitational acceleration and B is parcel buoyancy. At

each level, the buoyancy of the cloud parcel is diagnosed using



B = % (TZ — T2) — Y, (5)

where T, is virtual temperature and u is the adiabatic cloud water mixing ratio.
The fractional entrainment and detrainment rate used in (1), (2), and (4) are
determined differently in the updraft and downdraft. In updraft calculations, if the

buoyancy of the parcel is positive, the fractional entrainment rate is determined by,
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where C, is a constant introduced by Gregory (2001) as a fraction of the kinetic energy
gained by buoyancy that is transferred to the air mass entrained from the environment.
The Model E2 convection scheme launches two plumes with different values of C; to
allow for instantaneous variability of convection depth within a gridbox (e.g., deep and
shallow, deep and congestus, etc.). Above the level of neutral buoyancy, the model no
longer entrains, but it detrains convective air mass to the environment and assumes the
fractional detrainment rate to also given by (6), but multiplied by —1. The fractional
entrainment rate for the downdraft is set to 2x10~* (m™); there is no downdraft vertical
velocity equation. The downdraft does not detrain until it becomes positively buoyant,

with 75% of its mass detraining at each subsequent.



The updraft calculation is triggered from a conditionally unstable layer where
the virtual moist static energy of the layer exceeds the saturation virtual moist static
energy of the level above (Yao and Del Genio 1989). The mass flux at cloud base is
determined as the mass flux required to remove the instability at cloud base during a
convective adjustment time currently specified to be 1 hour. This total mass flux is
partitioned into two parts for the less-entraining (i.e. smaller C, value) and more-
entraining plumes, depending on the grid-scale sigma velocity at the level above. The
stronger the upward motion at the level above cloud base, which represents lower-level
convergence, the larger the mass fraction of the less-entraining plume. For the potential
temperature, specific humidity, and horizontal momentum of the updraft, gridbox-
mean values at the cloud-base level are used. The updraft vertical velocity is initialized

using the turbulent kinetic energy (TKE) from the planetary boundary layer scheme

(2_|XTKE for less-entraining plume and 2 TKE for more-entraining plume).
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A downdraft can be triggered, during the course of calculations of the rise of the
updraft plume, from any level where an equal mixture of cloudy and environmental air
has negative buoyancy. A downdraft calculation is initialized with a fixed fraction (1/6)
of the mass of the updraft and an equal amount of mass from the environment. For
potential temperature, specific humidity, and horizontal momentum, cloudy and
environmental quantities are averaged for the initial downdraft properties. Evaporation

of convective condensate produced and carried by the updraft modifies the potential



temperature and specific humidity of the downdraft plume. In the AR5 version, all
condensate can evaporate in the downdraft until it saturates. The downdraft is allowed
to descend below cloud base if it is negatively buoyant. (In AR5 version the buoyancy is
simply based on the temperature difference between the downdraft plume and
environment; the buoyancy was changed to include effects of water vapor and

convective condensate in later versions).

2) Cloud microphysics

At each level, the fractions of condensate to be i) advected upward, ii) detrained
out of the updraft, and iii) precipitated are diagnosed based on the assumed cloud
particle size distribution, terminal velocity of particles, and vertical velocity of the
updraft from Eq. (4), following Del Genio et al. (2005). Note that the updrafts are
currently the only transport mechanism for condensate. Specifically, mass distribution
(M(D)) of the condensate is assumed to be given by the Marshall-Palmer size

distribution,

M(D) = (mp,,No/6)D3e ", (A6)

where D is the particle diameter, N, = 8x10°m™*, 1 = (p,,No/1)'/*, pw = p1, Py Pi

represents the densities of liquid (p;), graupel (p,) and ice (p;).



Based on parcel temperature, different formulas are used for liquid, graupel, and
ice/snow to calculate the amount of condensate that precipitates, detrains, and is

advected upward
(A7)

where f; is the fraction of frozen condensate existing as ice/snow (rather than graupel),
T, is parcel temperature, Ty is temperature at the freezing level, T;; = T — 4wy, is the
temperature where all condensate becomes ice/snow, and wy,, is the vertical velocity of
the parcel at the freezing level. Above (° all convective condensate is assumed to be
liquid.

Particle size-fall speed relationships are fits to the terminal velocity (v;)
measurements from field experiments, adjusted for pressure variations with respect to

surface pressure Py, given by
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for liquid, graupel, and ice/snow, respectively.

Equations above are solved for the critical values of diameter D .+ at which
v+ = w" £ Aw, where Aw = %%, Az is layer thickness, and At is the model physics time
step. A particle whose Doppler vertical velocity v, — w* would not carry it out of the
layer in one physics time is detrained, while particles with positive (negative) Doppler
vertical velocity are advected upward (precipitated).

The amount of condensate in each category is calculated by integrating the Eq. (6)
over the appropriate particle size range. For example, the mass of precipitating

condensate (the part of the mass distribution with D > D +), which is
— (mewNo) r® [3,-AD — —AD _+9-4(13 13 2 42
tp = (=) J,_, D*e7*PdD = (1tp,,No/6)e P A~*(D%2A® + 3DZ:A% + 6D +A + 6). (12)

Any precipitating condensate that is not evaporated in the downdraft process

can be re-evaporated in the environment if possible.



Table 1. Source/sink terms in Eq. (2).
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